Exponential#
- class relife.lifetime_model.Exponential(rate=None)[source]#
Exponential lifetime distribution.
The exponential distribution is a 1-parameter distribution with \((\lambda)\). The probability density function is:
\[f(t) = \lambda e^{-\lambda t}\]- where:
\(\lambda > 0\), the rate parameter,
\(t\geq 0\), the operating time, age, cycles, etc.
- Parameters:
- ratefloat, optional
rate parameter
- Attributes:
- fitting_resultsFittingResults, default is None
An object containing fitting results (AIC, BIC, etc.). If the model is not fitted, the value is None.
nb_paramsNumber of parameters.
paramsParameters values.
params_namesParameters names.
plotProvides access to plotting functionnalities
rateGet the current rate value.
Methods
The cumulative density function.
The cumulative hazard function.
The derivate of the hazard function.
Estimation of the distribution parameters from lifetime data.
Estimation of the distribution parameters from interval censored lifetime data.
The hazard function.
Inverse cumulative hazard function.
The inverse survival function.
The jacobian of the cumulative density function.
The jacobian of the cumulative hazard function.
The jacobian of the hazard function.
The jacobian of the probability density function.
The jacobian of the survival function.
Lebesgue-Stieltjes integration.
The mean of the distribution.
The median.
n-th order moment
The mean residual life function.
The probability density function.
The percent point function.
Random variable sampling.
The survival function.
The variance of the distribution.
- cdf(time)#
The cumulative density function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- chf(time)[source]#
The cumulative hazard function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- dhf(time)[source]#
The derivate of the hazard function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- fit(time, event=None, entry=None, optimizer_options=None)#
Estimation of the distribution parameters from lifetime data.
- Parameters:
- time1d array
Observed lifetime values.
- event1d array of bool, default is None
Boolean indicators tagging lifetime values as right censored or complete.
- entry1d array, default is None
Left truncations applied to lifetime values.
- optimizer_optionsdict, default is None
- Extra arguments used by scipy.minimize. Default values are:
method : “L-BFGS-B”
contraints : ()
tol : None
callback : None
options : None
bounds : self.params_bounds
x0 : self.init_params
- Returns:
- Self
The current object with the estimated parameters setted inplace.
- fit_from_interval_censored_lifetimes(time_inf, time_sup, entry=None, optimizer_options=None)#
Estimation of the distribution parameters from interval censored lifetime data.
- Parameters:
- time_inf1d array
Observed lifetime lower bounds.
- time_sup1d array
Observed lifetime upper bounds.
- entry1d array, default is None
Left truncations applied to lifetime values.
- optimizer_optionsdict, default is None
- Extra arguments used by scipy.minimize. Default values are:
method : “L-BFGS-B”
contraints : ()
tol : None
callback : None
options : None
bounds : self.params_bounds
x0 : self.init_params
- Returns:
- Self
The current object with the estimated parameters setted inplace.
Notes
Where time_inf == time_sup, lifetimes are complete.
- hf(time)[source]#
The hazard function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- ichf(cumulative_hazard_rate)[source]#
Inverse cumulative hazard function.
- Parameters:
- cumulative_hazard_ratefloat or np.ndarray
Cumulative hazard rate value(s) at which to compute the function. If ndarray, allowed shapes are (), (n,) or (m, n).
- Returns:
- Function values at each given cumulative hazard rate(s).
- isf(probability)#
The inverse survival function.
- Parameters:
- probabilityfloat or np.ndarray
Probability value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given probability value(s).
- jac_cdf(time, *, asarray=False)#
The jacobian of the cumulative density function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).- asarraybool, default is False
- Returns:
- np.float64, np.ndarray or tuple of np.float64 or np.ndarray
The derivatives with respect to each parameter. If
asarrayis False, the function returns a tuple containing the same number of elements as parameters. Ifasarrayis True, the function returns an ndarray whose first dimension equals the number of parameters. This output is equivalent to applyingnp.stackon the output tuple whenasarrayis False.
- jac_chf(time, *, asarray=False)[source]#
The jacobian of the cumulative hazard function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).- asarraybool, default is False
- Returns:
- np.float64, np.ndarray or tuple of np.float64 or np.ndarray
The derivatives with respect to each parameter. If
asarrayis False, the function returns a tuple containing the same number of elements as parameters. Ifasarrayis True, the function returns an ndarray whose first dimension equals the number of parameters. This output is equivalent to applyingnp.stackon the output tuple whenasarrayis False.
- jac_hf(time, *, asarray=False)[source]#
The jacobian of the hazard function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).- asarraybool, default is False
- Returns:
- np.float64, np.ndarray or tuple of np.float64 or np.ndarray
The derivatives with respect to each parameter. If
asarrayis False, the function returns a tuple containing the same number of elements as parameters. Ifasarrayis True, the function returns an ndarray whose first dimension equals the number of parameters. This output is equivalent to applyingnp.stackon the output tuple whenasarrayis False.
- jac_pdf(time, *, asarray=False)#
The jacobian of the probability density function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).- asarraybool, default is False
- Returns:
- np.float64, np.ndarray or tuple of np.float64 or np.ndarray
The derivatives with respect to each parameter. If
asarrayis False, the function returns a tuple containing the same number of elements as parameters. Ifasarrayis True, the function returns an ndarray whose first dimension equals the number of parameters. This output is equivalent to applyingnp.stackon the output tuple whenasarrayis False.
- jac_sf(time, *, asarray=False)#
The jacobian of the survival function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).- asarraybool, default is False
- Returns:
- np.float64, np.ndarray or tuple of np.float64 or np.ndarray
The derivatives with respect to each parameter. If
asarrayis False, the function returns a tuple containing the same number of elements as parameters. Ifasarrayis True, the function returns an ndarray whose first dimension equals the number of parameters. This output is equivalent to applyingnp.stackon the output tuple whenasarrayis False.
- ls_integrate(func, a, b, deg=10)#
Lebesgue-Stieltjes integration.
- Parameters:
- funccallable (in1 ndarray , out1 ndarray)
The callable must have only one ndarray object as argument and one ndarray object as output
- andarray (maximum number of dimension is 2)
Lower bound(s) of integration.
- bndarray (maximum number of dimension is 2)
Upper bound(s) of integration. If lower bound(s) is infinite, use np.inf as value.)
- degint, default 10
Degree of the polynomials interpolation
- Returns:
- np.ndarray
Lebesgue-Stieltjes integral of func from a to b.
- median()#
The median.
- Returns:
- np.float64
- moment(n)#
n-th order moment
- Parameters:
- nint
order of the moment, at least 1.
- Returns:
- np.float64
- mrl(time)[source]#
The mean residual life function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- property nb_params#
Number of parameters.
- Returns:
- int
Number of parameters.
- property params#
Parameters values.
- Returns:
- ndarray
Parameters values
Notes
If parameter values are not set, they are encoded as np.nan value.
- property params_names#
Parameters names.
- Returns:
- list of str
Parameters names
Notes
Parameters values can be requested (a.k.a. get) by their name at instance level.
- pdf(time)#
The probability density function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).
- property plot#
Provides access to plotting functionnalities
- ppf(probability)#
The percent point function.
- Parameters:
- probabilityfloat or np.ndarray
Probability value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given probability value(s).
- property rate#
Get the current rate value.
- Returns:
- float
- rvs(size, *, nb_assets=None, return_event=False, return_entry=False, seed=None)#
Random variable sampling.
- Parameters:
- sizeint
Size of the generated sample.
- nb_assetsint, optional
If nb_assets is not None, 2d arrays of samples are generated.
- return_eventbool, default is False
If True, returns event indicators along with the sample time values.
- return_entrybool, default is False
If True, returns corresponding entry values of the sample time values.
- seedoptional int, np.random.BitGenerator, np.random.Generator, np.random.RandomState, default is None
If int or BitGenerator, seed for random number generator. If np.random.RandomState or np.random.Generator, use as given.
- Returns:
- float, ndarray or tuple of float or ndarray
The sample values. If either
return_eventorreturn_entryis True, returns a tuple containing the time values followed by event values, entry values or both.
- sf(time)#
The survival function.
- Parameters:
- timefloat or np.ndarray
Elapsed time value(s) at which to compute the function. If ndarray, allowed shapes are
(),(n,)or(m, n).
- Returns:
- np.float64 or np.ndarray
Function values at each given time(s).